💸 Spend Tracking
Track spend for keys, users, and teams across 100+ LLMs.
Getting Spend Reports - To Charge Other Teams, API Keys
Use the /global/spend/report
endpoint to get daily spend per team, with a breakdown of spend per API Key, Model
Example Request
curl -X GET 'http://localhost:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-1234'
Example Response
- Expected Response
- Script to Parse Response (Python)
[
{
"group_by_day": "2024-04-30T00:00:00+00:00",
"teams": [
{
"team_name": "Prod Team",
"total_spend": 0.0015265,
"metadata": [ # see the spend by unique(key + model)
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "88dc28.." # the hashed api key
},
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "a73dc2.." # the hashed api key
},
{
"model": "chatgpt-v-2",
"spend": 0.000214,
"total_tokens": 122,
"api_key": "898c28.." # the hashed api key
},
{
"model": "gpt-3.5-turbo",
"spend": 0.0000825,
"total_tokens": 85,
"api_key": "84dc28.." # the hashed api key
}
]
}
]
}
]
import requests
url = 'http://localhost:4000/global/spend/report'
params = {
'start_date': '2023-04-01',
'end_date': '2024-06-30'
}
headers = {
'Authorization': 'Bearer sk-1234'
}
# Make the GET request
response = requests.get(url, headers=headers, params=params)
spend_report = response.json()
for row in spend_report:
date = row["group_by_day"]
teams = row["teams"]
for team in teams:
team_name = team["team_name"]
total_spend = team["total_spend"]
metadata = team["metadata"]
print(f"Date: {date}")
print(f"Team: {team_name}")
print(f"Total Spend: {total_spend}")
print("Metadata: ", metadata)
print()
Output from script
# Date: 2024-05-11T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.003675099999999999
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.003675099999999999, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 3105}]
# Date: 2024-05-13T00:00:00+00:00
# Team: Unassigned Team
# Total Spend: 3.4e-05
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 3.4e-05, 'api_key': '9569d13c9777dba68096dea49b0b03e0aaf4d2b65d4030eda9e8a2733c3cd6e0', 'total_tokens': 50}]
# Date: 2024-05-13T00:00:00+00:00
# Team: central
# Total Spend: 0.000684
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.000684, 'api_key': '0323facdf3af551594017b9ef162434a9b9a8ca1bbd9ccbd9d6ce173b1015605', 'total_tokens': 498}]
# Date: 2024-05-13T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.0005715000000000001
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.0005715000000000001, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 423}]
Reset Team, API Key Spend - MASTER KEY ONLY
Use /global/spend/reset
if you want to:
Reset the Spend for all API Keys, Teams. The
spend
for ALL Teams and Keys inLiteLLM_TeamTable
andLiteLLM_VerificationToken
will be set tospend=0
LiteLLM will maintain all the logs in
LiteLLMSpendLogs
for Auditing Purposes
Request
Only the LITELLM_MASTER_KEY
you set can access this route
curl -X POST \
'http://localhost:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
Expected Responses
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
Spend Tracking for Azure
Set base model for cost tracking azure image-gen call
Image Generation
model_list:
- model_name: dall-e-3
litellm_params:
model: azure/dall-e-3-test
api_version: 2023-06-01-preview
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_key: os.environ/AZURE_API_KEY
base_model: dall-e-3 # 👈 set dall-e-3 as base model
model_info:
mode: image_generation
Chat Completions / Embeddings
Problem: Azure returns gpt-4
in the response when azure/gpt-4-1106-preview
is used. This leads to inaccurate cost tracking
Solution ✅ : Set base_model
on your config so litellm uses the correct model for calculating azure cost
Get the base model name from here
Example config with base_model
model_list:
- model_name: azure-gpt-3.5
litellm_params:
model: azure/chatgpt-v-2
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: "2023-07-01-preview"
model_info:
base_model: azure/gpt-4-1106-preview